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Abstract
We study the kinetics of competitive random sequential adsorption (RSA)
of particles of binary mixture of points and fixed-sized particles within the
mean-field approach. The present work is a generalization of the random car
parking problem in the sense that it considers the case when either a car of
fixed size is parked with probabilityq or the parking space is partitioned
into two smaller spaces with probability (1−q) at each time event. This
allows an interesting interplay between the classical RSA problem at one
extreme(q = 1), and the kinetics of fragmentation processes at the other
extreme (q = 0). We present exact analytical results for coverage for a whole
range ofq values, and physical explanations are given for different aspects
of the problem. In addition, a comprehensive account of the scaling theory,
emphasizing dimensional analysis, is presented, and the exact expression for
the scaling function and exponents are obtained.

PACS numbers: 05.20.Dd, 02.50.−r, 05.40−y

The kinetics of adsorption or deposition of particles on a substrate is one of the most common
phenomena that occurs in many branches of science and technology including physics,
chemistry, biophysics and medicine. Examples include adsorption of macromolecules and
microscopic particles such as polymers, colloid, bacteria, protein or latex particles [1–3] on
solid surfaces. Due to its importance, it has been studied extensively through all avenues of
research comprising experimental, numerical and analytical means. Owing to the complex
nature of the process, one can hardly make any progress analytically in more than one
dimension (1D) and therefore most of the analytical work remains confined within 1D or
quasi-1D [4] only, where it is exactly solvable. The 1D problem is not at all a pedagogical
matter; it has been very useful in providing a deep understanding of the underlying mechanism
and has offered an insight into more realistic models in higher dimensions. It has also been
used as a test model to verify the results obtained from numerical simulations and data achieved
through real life experiments (for extensive reviews, see [5]).
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The simplest model one can think of that can capture the generic feature of the process
is the kinetics ofrandom sequential adsorption (RSA) of particles of a fixed size on a clean
substrate [6]. This is popularly known as the random car parking problem. It has both an
instructional value as well as a long historical significance. The basic rules of the processes
are (i) at each time event one particle is adsorbed, (ii) the sites for deposition of adsorbing
particles are chosen randomly and (iii), once the site is chosen, the event is successful if the
site is empty; otherwise, the particle goes back to the particle reservoir and competes again
for further pick up on an equal footing with the rest of the particles in the reservoir. Within
this model, no two particles or any of their parts can occupy the same spatial position in the
substrate. This means that particle overlapping is forbidden and hence the resulting model
describes the kinetics and structure formation of a monolayer. Moreover, once deposited,
particles are clamped permanently, making them immobile; therefore, the state of the site at
each time step is changed irreversibly from an empty to a filled state. The irreversible nature
of the process causes lack of a detailed balance and drives the system out of equilibrium.
Therefore, one can no longer use the well-developed standard statistical mechanics approach
fit for its equilibrium counterpart. However, there are limited attempt where methods of
equilibrium statistical mechanics have been applied, e.g. series and virial expansions [7]. A
unique yet fascinating feature of the RSA processes is the existence of a jamming coverage
in the arbitrary dimension. This is the state when it is impossible to deposit even one single
further particle on the substrate, despite the presence of gaps (voids), which are in fact not
large enough to allow any further deposition.

To bring the RSA problem closer to real-life experiment, there exist many interesting
variants of this model. Examples include cooperative sequential adsorption (CSA) [5, 8], the
accelerated random sequential adsorption (ARSA) model [9], the ballistic deposition (BD)
[10] model, the RSA on disordered substrates [11], the RSA of growing objects [12] and many
attempts to include transport of depositing particles by diffusion [5]. Recently, there has been
an increasing interest in the study of the RSA of a mixture of particles of different degrees,
comprising a binary mixture of greatly differing diameters [13, 14], and a continuous mixture
of sizes obeying a power-law size distribution [15]. It is important to note that in the former
two cases, the ultimate structure in the long time limit is described by the jamming coverage,
whereas in the latter, the resulting monolayer is uniquely characterized by an exponent called
fractal dimension, since the arising pattern is a fractal [15]. The motivation of our present
work comes from Bartelt and Privman [14], who studied the binary mixture of monomers
and k-mers on 1D lattice as well as Talbot and Schaaf [14], who studied the RSA of a binary
mixture of greatly differing sizes. Bartelt and Privman obtained an approximate expression
for the coverage for continuum model by takingk −→ ∞.

In the present work, we concentrate on the binary mixture of fixed size and point particles,
instead of point-like particles, in a 1D substrate. We give an exact solution for the gap-
size distribution function and a continuous spectrum of jamming coverage depending on the
probability at which cars are parked. It is noteworthy to mention that within the RSA model
only one particle can be adsorbed at each time step. This is the basic principle of the RSA
process and it is indispensable if we want to call it sequential adsorption. In our investigation
we consider the case when either a car is parked with probabilityq or the parking space is
partitioned with probability(1 − q). That is, points and fixed-sized particles compete for
deposition, and at each time step only one of the two events is successful, and hence we call
it competitive sequential adsorption. Indeed, we find that both the resulting dynamics and the
final coverage differ significantly from previous studies. We find that the RSA of a mixture
of point-like and fixed-sized particles, points and fixed-sized particles and the binary mixture
of significantly differing sizes behave in a completely different way. This means that one has
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to be very careful in making any approximation, since the final results are very prone to the
exact ratio of the particle sizes. The beauty of the present work is that the results are exact and
obtained analytically.

In addition, we present an explicit scaling description with special emphasis on the
dimensional analysis. It is worth mentioning that, despite the long history of the RSA
problem, a proper description of the scaling theory has remained untouched, although it
has been a potential candidate for this. Dimensional analysis provides an insight into the
problem and of course one cannot get things wrong if one remains faithful to the dimensional
consistency.

We first give the general rate equation that describes the sequential deposition of particles,
whose sizes and positions are determined by the specific choice of the model. Let us denote
P(x, t) as the gap size distribution function of sizex at timet, consequentlyP(x, t) obeys the
following integro-differential equation

∂P (x, t)

∂t
= −P(x, t)

∫ x

0
dz p(z)

∫ x−z

0
dy F(x − y − z, y|z)

+ 2
∫ ∞

x

dy P(y, t)

∫ y−x

0
dz p(z)F (x, y − x − z|z). (1)

Herep(z) is called the parking distribution function, that determines the size of the depositing
particle andF(x − y − z, y|z) is the deposition kernel, that determines the ratea(x, z) =∫ x

0 dz p(z)
∫ x−z

0 dy F(x−y−z, y|z)at which an interval of sizex is destroyed by the deposition
of a particle of sizez, thus creating two new intervals of sizesx−y−z andy. The first term on
the right-hand side of the equation (1) describes the destruction of the interval of sizex and the
second term their creation from the intervaly (y > x). Note that if one choosesF(x, y|z) = 1
and p(x) = δ(x − σ) (σ is the size of the depositing particle) then the equation (1)
simply describes the classical car parking problem [6, 16]. It is further interesting to note
that if one choosesp(z) = δ(z) then the resulting equation describes the random sequential
deposition of points, which is equivalent to the standard binary fragmentation of particles [17].
In fact, the car parking problem can be interpreted as placing cuts with finite thickness and
fragmenting particles into two pieces at each time step. The connection between the RSA and
the binary fragmentation process was first noted by Ziff [18].

In order to gain a detailed insight into the process, we first study the RSA of point-sized
particles alone, which in fact describes the kinetics of the binary fragmentation process. Let us
consider the simplest case whenF(x, y) = 1, which is known as the random scission model
[17, 19]; the resulting equation is

∂P (x, t)

∂t
= −xP(x, t) + 2

∫ ∞

x

P (y, t) dy. (2)

First, note thata(x) = x is the quantity that describes the rate and therefore it must bear the
dimension inverse of timet. This means thatx andt are interlocked and any one of these two
variables can be expressed in terms of the other one. On the other hand, sincex and t are
the only two governing parameters, the quantityP(x, t) can also be expressed in terms of one
parameter alone. Therefore, assumingt to be the independent parameter, we can write the
following scalingansatz

P(x, t) ∼ P0(t)φ(x/s(t)) (3)

whereφ(ξ) is known as the scaling function. The equation (2) will admit scaling if we
can choose a time-dependent scales(t) for the spatial variable, andP0(t) for the particle-size
distribution function so that all plots ofP(x, t)/P0(t) againstx/s(t) for any initial distribution
collapse onto one single curve. This can only be true if bothP0(t) ands(t) show a power-law
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behaviour. This is due to the fact thatP0(t) and s(t) must bear the dimensions ofP(x, t)
andx, respectively. On the other hand, the dimension of any physical quantity must be of
power-monomial nature, i.e. we can write

P0(t) ∼ tα and s(t) ∼ tz. (4)

Simple dimensional analysis of equation (1) immediately revealsz = 1 and since it describes
the conservation of mass, i.e

∫ ∞
0 xP(x, t) dx, it is independent of time and yieldsα = 2. The

solution of the equation (1) is now well known and reads as

P(x, t) ≈ t2e−xt (5)

which givesφ(ξ) = e−ξ . Therefore, both the exact solution and the dimensional analysis
confirm thatt2 bears the dimension ofP(x, t) andx bears the dimension inverse of time. We
shall use this result later.

We now study the random sequential deposition of a mixture of points and of particles
of sizeσ . Considering the rate equation for the classical car parking problem and the binary
fragmentation model, we can write the following equations:

∂P (x, t)

∂t
= −(x − qσ)P (x, t)

+ 2q
∫ ∞

x+σ
dy P(y, t) + 2(1 − q)

∫ ∞

x

P (y, t) dy for x � σ (6)

∂P (x, t)

∂t
= 2q

∫ ∞

x+σ
dy P(y, t)

+ (1 − q)

(
−xP(x, t) + 2

∫ ∞

x

P (y, t) dy

)
for x < σ. (7)

This is an obvious generalization of the RSA problem, in which at each time event a particle of
sizeσ is deposited with probabilityq or a point is deposited with probability (1− q). Another
way of interpreting the present model is that at each time event a car is parked with probability
q on the one-dimensional parking space or the parking space is divided into smaller spaces
with probability (1− q). Knowing the solution of equation (2) and the solution for the car
parking problem alone, we write the followingansatz:

P(x, t) = A(t)e−(x−qσ)B(t) (8)

whereA(t) and B(t) are yet to be determined. The simplest way of findingB(t) is by
appreciating that the argument of an exponential function must be a dimensionless quantity.
On the other hand, equation (6) implies that(x − qσ) is the rate at which gaps of sizex are
destroyed, and hence it must bear the dimension inverse of time. Therefore, onlyB(t) ∼ t

can make the solution physically acceptable. On the other hand, the factorA(t) must bear the
dimension ofP(x, t) and hence we must haveA(t) ∝ t2. In order to obtain exact solutions for
A(t) andB(t) one can also substitute theansatz into the equation (6). This gives two differential
equations, (i) the differential forB(t), dB(t)

dt = 1 and (ii) the differential equation forA(t)

d lnA(t)

dt
= 2q

e−σ t

t
+

2(1 − q)

t
. (9)

Both the equations should be solved subject to the initial conditionP(x,0) = 0 and∫ ∞
0 dy yP(y,0) = 1 since initially the line is empty [16]. These two initial conditions imply

A(0) = B(0) = 0 and lim
t−→0

A(t)

B2(t)
= 1. (10)
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Solving equations forA(t) andB(t) subject to the initial condition gives

A(t) = t2Fq(σ t) and B(t) = t (11)

whereFq(σ t) = exp
(
−2q

∫ σ t

0
(1−e−u)

u
du

)
and a dimensionless quantity. These explicit

solutions forA(t) andB(t) further support our previous observation based on dimensional
analysis. The solutions of equations (6) and (7) are, therefore,

P(x, t) = t2Fq(σ t) e−(x−qσ)t for x � σ (12)

and

P(x, t) =
∫ t

0
dτ τFq(στ)e−(x−qσ)τ [2q e−στ + (2 − τ )(1 − q)] for x < σ. (13)

The above solutions imply that we can still recover the solution of the binary fragmentation pro-
cess by takingσ = 0. It is important to mention that the solution of equation (6) alone is enough
to provide us with all the interesting information we need. In fact, we never use the solution
for P(x, t) whenx < σ , which is also true in the case of the classical car parking problem.

To give a scaling analysis and for better clarity we defineP(x, t) ≡ P((x − qσ), t) for
x � σ , then we find that the solution of equation (6) satisfies the following identity:

P((x − qσ)λ, t/λ) = λ−2P((x − qσ), t). (14)

This relation is the hallmark for the existence of scale invariance and it is equivalent to a
data-collapse formalism [20], as we shall show below. It means that if the deposition rate
(x − qσ) is increased by a factorλ, and the observation time is decreased by the same factor,
then the resulting structure would look the same except for a numerical prefactor. In other
words, increasing(x − qσ) by a factor ofλ and decreasingt by the same factor means that
the numerical value of the gap-size distribution function is reduced by a factor ofλ2. Since
the equation (13) is true for all positive values ofλ, we can chooseλ = t in equation (13) then

Pscale= P(ξ,1) = φ(ξ). (15)

Here

Pscale= P

t2
and ξ = (x − qσ)t (16)

andφ(ξ) is the scaling function. For further clarity we defineξ = ζ − qη, whereζ = xt and
η = σ t. Then comparing with the explicit solution we get

φ(ξ) = Fq(η) e−ξ . (17)

This clearly reveals thatφ is indeed a dimensionless quantity. Therefore, ifPscale is plotted
against the scaled sizeξ , then the entire family of curves collapses into one single curve
described by the functionφ(ξ). This is possible due to the fact that the scaling function
depends only on a dimensionless quantity, the numerical value of which must be independent
of the choice of units. The method ofdata collapse is a very powerful technique for establishing
scaling and it is especially useful to analyse and extract exponents from data obtained from
numerical simulations or from real-life experiments.

The most important quantity of interest in the RSA process is the coverage which is
defined as

θ(t) = 1 −
∫ ∞

0
xP(x, t) dx. (18)

It tells us the fraction of the substrate covered by the depositing particles. In the case of
classical random car parking problem only 74.759% of the total substrate is covered by the
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Figure 1. Jamming coverage vs timet and probabilityq (a 3D view).

depositing particles. It is now interesting to see, how the deposition of points or the division of
parkingspaces changes the jamming phase. In the present case, of course, there is always space
for adsorption of points as the points do not have any width due to their inherent definition.
Hence, they do not contribute to the coverage or the jamming phase. Therefore, in this model
the jamming coverage is the state when there are no more gaps available for the adsorption
of particles of sizeσ . Once this state is achieved, it is no longer necessary to continue the
process as far as the jamming state is concerned. So, it would be interesting to see in what
way the coverage changes, if at all.

To find this out, it is more convenient to deal with the rate equation for the coverage than
the coverage itself. Combining equations (6), (7) and (17) we get

dθ

dt
= qσ

∫ ∞

σ

dx (x − σ)P (x, t). (19)

Clearly, this states that only fixed-sized particles contribute to the coverage. Note that the
right-hand side of equation (18) bears the inverse dimension of time, as it should. Substituting
the solution of equation (6) into this and integrating it, we find the final expression for the
jamming coverage

θ(∞) = q

∫ ∞

0
dsFq(s) e−(1−q)s. (20)

This is a dimensionless quantity and hence, upon transition from one unit of measurement
to another within a given class, its numerical value must remain unchanged. Therefore, the
final coverage or the jamming coverageθ(∞) is independent of the size of the depositing
particleσ , which is indeed a non-trivial and interesting result. This also reflects the fact that
the gap-size distribution functionP((x − qσ), t) satisfies the exact identity (equation (13))
and the functionFq(σ t) is a dimensionless quantity. In fact, all properties of interest are
independent of the size of the depositing particle, and the rate at which they are adsorbed is
due to the existence of the scaling property. Clearly, ifσ is increased by a factorλ, then the
time to reach the jamming configuration is reduced by a factorλ. However, this is true only if
the substrate is sufficiently large in comparison to the depositing particle.One can now obtain
a whole range of values for the jamming coverage by just tuning theq value. Figure 1 shows
that the jamming state starts from zero atq = 0, since there the problem reduces itself to the
random sequential adsorption of points. Note the inherent definition of point that does not
occupy space. Therefore, one might apprehend that it does not play any role in achieving the
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Figure 3. Jamming coverageθ(∞) vs q (this is, in fact, the [100] face of figure 1).

jamming coverage if it is adsorbed sequentially with a fixed-sized particle. However, note
that once a point is deposited, it excludes fixed-sized particles from landing within around
σ/2, which is the distance between the point where it is chosen to land and the centre of the
fixed-sized particle. This exclusion will certainly have effect on the resulting dynamics of the
process.

In other words, a point divides the substrate, and hence each successful deposition of
points creates two new ends belonging to two different gaps. No particle can be adsorbed on
a space which belongs to two different gaps, i.e. overlapping of points is forbidden. We find
that forq > 0, the jamming coverage changes non-trivially. Figure 1 exhibits a 3D view of
the jamming coverage against time and the probabilityq with which fixed-sized particles are
adsorbed. Figure 2 is the cross-section of the coverage–time plane atq = 1 andq = 1/2
of figure 1. It is generally believed that if a mixture contains a small number of particles of
different sizes, then the kinetics and the jamming configurations are primarily determined by
the smallest size, which in the present case is a point particle. However, in our study we find
that the jamming coverage is primarily determined by the larger particle; yet its dynamics
and other aspects are influenced by the size of the smaller particle. Forq > 0, the jamming
coverage is always smaller than its corresponding classical counterpart. Figure 2 is plotted to
demonstrate the slower approach to the jamming state as theq value decreases. This is due
to the fact that the adsorption of points leads to the crowding of more partition in the parking
space than to the adsorption of fixed-sized particles. Figure 3, in fact, is the cross section of
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coverage–q plane of figure 1 at the state when the system has achieved the jamming limit. It
shows that the jamming coverage increases monotonously as fixed-sized particles win more in
the competition with the point particles for adsorption. However, it does not increase linearly
with q; instead one can subdivide the whole curve into a number of regimes of width 0.2 in q
values, so that in each regime they can be well approximated to a straight line. The appearance
of a nonlinear rise becomes more pronounced if it is plotted on a larger scale.

In conclusion, the present model, though simple, can yet capture some generic features of
the RSA of the mixture of particles such as coverage and the scaling behaviour. We find that
the coverage of mixture of points with fixed-sized particles stays always lower than its classical
counterpart. It would be interesting to see how the results change when both the contents
of the binary mixture are of a finite size but differ in length, which we intend to present in
a forthcoming paper [21]. In addition, we give an extensive scaling description of the RSA
problem which has not been addressed so far. One potential application of the present work
could be the simple cyclization reaction process where adjacent pendant groups link randomly
along the polymer, or the polymer itself undergoes a possible degradation. This is in fact a
natural generalization of the original work by Folry [2]. We believe the present work will
shed new light into the underlying mechanism of the problem and will help guiding numerical
and experimental works dealing with more realistic situations addressing the adsorption of
mixture.
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